Title - Deep Learning Based Situated Goal-oriented Dialogue Systems
Abstract - Interacting with machines in natural language has been a holy grail since the beginning of computers. Given the difficulty of understanding natural language, only in the past couple of decades, we started seeing real user applications for targeted/limited domains. More recently, advances in deep learning based approaches enabled exciting new research frontiers for end-to-end goal-oriented conversational systems. In this talk, I’ll review end-to-end dialogue systems research, with components for situated language understanding, dialogue state tracking, policy, and language generation. The talk will highlight novel approaches where dialogue is viewed as a collaborative game between a user and an agent in the presence of visual information, and will aim to summarize challenges for future research.
Abstract - Interacting with machines in natural language has been a holy grail since the beginning of computers. Given the difficulty of understanding natural language, only in the past couple of decades, we started seeing real user applications for targeted/limited domains. More recently, advances in deep learning based approaches enabled exciting new research frontiers for end-to-end goal-oriented conversational systems. In this talk, I’ll review end-to-end dialogue systems research, with components for situated language understanding, dialogue state tracking, policy, and language generation. The talk will highlight novel approaches where dialogue is viewed as a collaborative game between a user and an agent in the presence of visual information, and will aim to summarize challenges for future research.
Interspeech 2018 Perspective talk by Dilek Hakkani-Tur camera iphone 8 plus apk | |
2 Likes | 2 Dislikes |
54 views views | 16 followers |
People & Blogs | Upload TimePublished on 1 Mar 2019 |
Không có nhận xét nào:
Đăng nhận xét